feature selection using genetic algorithm for classification of schizophrenia using fmri data
Authors
abstract
in this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fmri) data. in the preprocessing step, the number of fmri time points is reduced using principal component analysis (pca). then, independent component analysis (ica) is used for further data analysis. it estimates independent components (ics) of pca results. for feature extraction, local binary patterns (lbp) technique is applied on the ics. it transforms the ics into spatial histograms of lbp values. for feature selection, genetic algorithm (ga) is used to obtain a set of features with large discrimination power. in the next step of feature selection, linear discriminant analysis (lda) is applied to further extract features that maximize the ratio of between-class and within-class variability. finally, a test subject is classified into schizophrenia or control group using a euclidean distance based classifier and a majority vote method. in this paper, a leave-one-out cross validation method is used for performance evaluation. experimental results prove that the proposed method has an acceptable accuracy.
similar resources
Feature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
full textFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
full textFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
full textA Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification
In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...
full textFeature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI
Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...
full textFeature Selection in Data-Mining for Genetics Using Genetic Algorithm
We discovered genetic features and environmental factors which were involved in multifactorial diseases. To exploit the massive data obtained from the experiments conducted at the General Hospital, Chennai, data mining tools were required and we proposed a 2-Phase approach using a specific genetic algorithm. This heuristic approach had been chosen as the number of features to consider was large...
full textMy Resources
Save resource for easier access later
Journal title:
journal of ai and data miningPublisher: shahrood university of technology
ISSN 2322-5211
volume 3
issue 1 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023